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Quantum integrable system with two color components in two dimensions

Mu-Lin Yan
Center for Fundamental Physics, University of Science and Technology of China, Hefei Anhui 230026, People’s Republic of C

~Received 21 June 1999!

The Davey-Stewartson 1~DS1! system@Proc. R. Soc. London, Ser. A338, 101 ~1974!# is an integrable
model in two dimensions. A quantum DS1 system with two color components in two dimensions has been
reformulated. This two-dimensional problem has been reduced to two one-dimensional many-body problems
with two color components. The solutions to the two-dimensional problem under consideration can be con-
structed from the resulting problem in one dimensions. For the latter problem withd-function interactions and
solution by the Bethe ansatz, we introduce symmetrical and antisymmetrical Young operators of the permu-
tation group and obtain the exact solutions for the quantum DS1 system.

PACS number~s!: 05.30.2d, 03.65.2w
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I. INTRODUCTION

The Davey-Stewartson 1~DS1! system is an integrable
model in space of two spatial and one temporal dimensi
@(211)D#. The quantized DS1 system with scalar fields~1
component, or 1C! can be formulated in terms of the Hami
tonian of quantum many-body problem in two dimensio
and some of them can be solved exactly@1,2#. Particularly, it
has been shown in Ref.@2# that these two-dimensional~2D!
quantumN-body system with 1C fields can be reduced to
solvable 1D quantumN-body systems with 1C fields an
with two-body potentials@3#. Thus through solving 1D quan
tum N-body problems with 1C fields we can get the solutio
for 2D quantumN-body problems with 1C fields. Here, th
key step is to separate the spatial variables of 2D quan
N-body problems with 1C fields by constructing an ans
@1,2#

C~j1 , . . . ,jN ,h1 , . . . ,hN!

5)
i , j

F12
c

4
e~j i j !e~h i j !G

3X~j1 , . . . ,jN!Y~h1 , . . . ,hN!,

where j i j 5j i2j j and h i j 5h i2h j . This ansatz will be
called the N-body variable-separation ansatz. It is we
known that the variable-separation methods are widely u
in solving high-dimensional one-particle problems. For
stance, for getting the wave functions of electron in hyd
gen atom, the ansatzC(r ,u,f)5R(r )P(u)F(f) is used to
reduce the 3D problem to the 1D problem~this ansatz is
what we call the one-body variable-separation ansatz!. The
N-body variable-separation ansatz can be thought of as
extension of one-body variable-separation ansatz. Since
N-body problems are much more complicated than the o
body problems, it will be highly nontrivial to construct
N-body variable-separation ansatz. Reference@1# provided
the first example for it and showed that the idea of varia
separating works indeed for theN-body problems induced
from the DS1 system.

In this paper, we intend to generalize the above idea to
multicomponent DS1 system, namely, to construct aN-body
PRE 611063-651X/2000/61~5!/4745~7!/$15.00
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variable-separation ansatz for the multicomponent case
to solve a specific model of 2D quantum DS1 system w
multicomponents.

The 1D N-body model with two components has be
investigated for long time@4,5#. The most famous one is th
model with delta-function interaction between 2C fermio
@4#. It was solved by the Bethe ansatz@6# and leads to the
Yang-Baxter equation and its thermodynamics studies@7,8#
because of the completeness of the Bethe ansatz solution
this paper, for definiteness, we shall study specific 2D qu
tum N-body system with 2C fields associated with the D
system. This quantumN-body problem under consideratio
can be reduced to two 1D quantumN-body problems with
2C fields of Ref.@4# and then be exactly solved by using a
appropriateN-body variable-separation ansatz and the Be
ansatz.

II. QUANTUM DS1 SYSTEM WITH TWO COMPONENTS
IN TWO DIMENSIONS

Following the usual DS1 equation@1,9#, the equation for
the DS1 system with two components reads

i q̇52 1
2 ~]x

21]y
2!q1 iA1q1 iA2q, ~1!

whereq has two color components,

q5S q1

q2
D , ~2!

and

~]x2]y!A152 ic~]x1]y!~q†
•q!,

~]x1]y!A25 ic~]x2]y!~q†
•q!,

where † means the Hermitian transposition, andc is the cou-
pling constant. Introducing the coordinatesj5x1y,h5x
2y, we have

A152 ic]j]h
21~q†

•q!2 iu1~j!, ~3!

A25 ic]h]j
21~q†

•q!1 iu2~h!, ~4!
4745 ©2000 The American Physical Society
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where

]h
21~q†

•q!5
1

2 S E
2`

h
dh82E

h

`

dh8D q†~j,h8,t !•q~j,h8,t !,

~5!

andu1 andu2 are constants of integration. According to Re
@2#, we choose them as

u1~j!5 1
2 E dj8dh8U1~j2j8!q†~j8,h8,t !•q~j8,h8,t !,

~6!

u2~h!5 1
2 E dj8dh8U2~h2h8!q†~j8,h8,t !•q~j8,h8,t !.

~7!

Thus, Eq.~1! can be written as

i q̇52~]j
21]h

2 !q1c@]j]h
21~q†

•q!1]h]j
21~q†

•q!#q

1 1
2 E dj8dh8@U1~j2j8!1U2~h2h8!#~q†8

•q8!q,

~8!

whereq85q(j8,h8,t). We quantize the system with the c
nonical commutation relations

@qa~j,h,t !,qb
†~j8,h8,t !#652d

ab
d~j2j8!d~h2h8!,

~9!

@qa~j,h,t !,qb~j8,h8,t !#650, ~10!

wherea,b51 or 2, @ ,#1 and @ ,#2 are anticommutator and
commutator, respectively. Then Eq.~8! can be written in the
form

q̇5 i @H,q#, ~11!

whereH is the Hamiltonian of the system

H5 1
2 E djdhH 2q†~]j

21]h
2 !•q

1
c

2
q†@~]j]h

211]h]j
21!~q†

•q!#•q

1 1
4 E dj8dh8q†@U1~j2j8!1U2~h2h8!#

3~q8†
•q8!•qJ . ~12!

The N-particle eigenvalue problem is

HuC&5EuC&, ~13!

where
uC&5E dj1dh1¯djNdhN

3 (
a1¯aN

Ca1¯aN
~j1h1¯jNhN!

3qa1

† ~j1h1!¯qaN

† ~jNhN!u0&. ~14!

The N-particle wave functionCa1 . . . aN
is defined by Eq.

~14!, which satisfies theN-body Schro¨dinger equation

2(
i

~]j i

2 1]h i

2 !Ca1¯aN
1c(

i , j
@e~j i j !d8~h i j !

1e~h i j !d8~j i j !#Ca1¯aN

1(
i , j

@U1~j i j !1U2~h i j !#Ca1¯aN

5ECa1¯aN
, ~15!

wherej i j 5j i2j j ,d8(j i j )5]j i
d(j i j ), and e(j i j )51 for j i j

.0,0 for j i j 50,21 for j i j ,0. Since there are products o
distributions in Eq.~15!, an appropriate regularization fo
avoiding uncertainty is necessary. This issue has been
cussed in Ref.@10#.

III. VARIABLE SEPARATION OF QUANTUM DS1
WITH TWO COMPONENTS AND BETHE ANSATZ

Our purpose is to solve theN-body Schro¨dinger Eq.~15!.
The results in Ref.@2# remind us that we can make the fo
lowing ansatz:

Ca1¯aN
5 (

a18¯aN8

b18¯bN8

)
i , j

F12
c

4
e~j i j !e~h i j !G

3Ma1¯aN ,a
18¯a

N8
Na1¯aN ,b

18¯b
N8

3Xa
18¯a

N8
~j1¯jN!Yb

18¯b
N8
~h1¯hN!, ~16!

whereM andN are matrices being independent ofj andh,
and bothXa1¯aN

(j1¯jN) and Yb1¯bN
(h1¯hN) are one-

dimensional wave functions ofN bodies. Substituting Eq
~16! into Eq. ~15!, we obtain

2(
i

]j i

2 Xa1¯aN
1(

i , j
U1~j i j !Xa1¯aN

5E1Xa1¯aN
,

~17!

2(
i

]h i

2 Yb1¯bN
1(

i , j
U2~h i j !Yb1¯bN

5E2Yb1¯bN
,

~18!

where U1(j i j ) and U2(h i j ) are two-body potentials, Eqs
~17! and~18! are one-dimensionalN-body Schro¨dinger equa-
tions andE11E25E. Above derivation indicates that th
two-dimensionalN-body Schro¨dinger Eq.~15! has been re-
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duced into two one-dimensionalN-body Schro¨dinger equa-
tions. Namely, the variables in the two-dimensionalN-body
wave functionCa1¯aN

have been separated.

At this stageM and N are unknown temporarily. It is
expected that for any given pair of exactly solvable 1
N-body problems and the correspondent solutions, we co
construct the solutionsCA1¯AN

for 2D N-body problems Eq.

~15! through constructing an appropriateM3N matrix. It
has been known that the 1DN-body problem in the form of
Eq. ~17! or ~18! can be solved exactly for a class of pote
tials @4,5,11#. To illustrate the construction ofM3N matrix,
we take both potentials in Eqs.~17! and ~18! to be the delta
functions, i.e., U1(j i j )52gd(j i j ) and U2(h i j )
52gd(h i j ) (g.0, the coupling constant!. Then Eqs.~17!
and ~18! become

2(
i

]j i

2 Xa1¯aN
12g(

i , j
d~j i j !Xa1¯aN

5E1Xa1¯aN

~19!

2(
i

]h i

2 Yb1¯bN
12g(

i , j
d~h i j !Yb1¯bN

5E2Yb1¯bN
.

~20!

As X andY are wave functions of Fermions with two com
ponents, denoted byXF andYF, the problem has been solve
by Yang long ago@4# ~more explicitly, see Refs.@12# and
@13#!. According to the Bethe ansatz, the continual solut
of Eq. ~19! in the region of 0,jQ1

,jQ2
,¯,jQN

,L

reads

XF5(
P

aP
(Q)exp$ i @kP1

jQ1
1•••1kPN

jQN
#%

5a
12̄ N

(Q) ei (k1jQ1
1k2jQ2

1¯1kNjQN
)

1a
21̄ N

(Q) ei (k2jQ1
1k1jQ2

1¯1kNjQN
)

1~N! 22! other terms, ~21!

where XFP$Xa1¯aN

F %, P5@P1 ,P2 , . . . ,PN# and Q

5@Q1 ,Q2 , . . . ,QN# are two permutations of the intege
1,2, . . . ,N, and

a
¯ i j ¯
(Q) 5Yji

lma
¯ j i¯
(Q) , ~22!

Yji
lm5

2 i ~kj2ki !P
lm1g

i ~kj2ki !2g
. ~23!

The eigenvalue is given by

E15k1
21k2

21•••1kN
2 , ~24!

where$ki% are determined by the Bethe ansatz equations

eik jL5 )
b51

M
i ~kj2Lb!2g/2

i ~kj2Lb!1g/2
~25!

)
j 51

N
i ~kj2La!2g/2

i ~kj2La!1g/2
52 )

b51

M
i ~La2Lb!1g

i ~La2Lb!2g
, ~26!
ld

n

with a51,̄ ,M , j 51,̄ ,N. Through exactly the same pro
cedures we can get the solutionYF andE2 to Eq. ~20!.

As X andY are boson wave functions, denoted byXB and
YB, it is easy to show that

XB5(
P

bP
(Q) exp$ i @kP1

jQ1
1•••1kPN

jQN
#%, ~27!

b
¯ i j ¯
(Q) 5Zji

lmb
¯ j i¯
(Q) , ~28!

Zji
lm5

i ~kj2ki !P
lm1g

i ~kj2ki !2g
~29!

and the Bethe ansatz equations are as follows@13#:

eik jL5~21!N11)
i 51

N
kj2ki1 ig

kj2ki2 ig )
b51

M
Lb2kj1 ig/2

Lb2kj2 ig/2
, ~30!

)
a51

M
Lb2La1 ig

Lb2La2 ig
5~21!M11)

j 51

N
Lb2kj1 ig/2

Lb2kj2 ig/2
. ~31!

YB is the same asXB. It is well known thatXF andYF (XB

and YB) are antisymmetrical~symmetrical! as the coordi-
nates and the color indices of the particles interchange sim
taneously, instead of the coordinates merely interchangin

IV. YOUNG OPERATOR OF PERMUTATION GROUP

For permutation groupSN : $ei ,i 51,̄ ,N! %, the totally
symmetrical Young operator is

ON5(
i 51

N!

ei , ~32!

and the totally antisymmetrical Young operator is

AN5(
i 51

N!

~21!Piei . ~33!

The Young diagram forON is

,

and forAN , it is .

For S3, for example, we have

O3511P121P131P231P12P231P23P12, ~34!

A3512P122P132P231P12P231P23P12. ~35!
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Lemma 1:(ONXF)(j1 ,j2 ,¯,jN) is antisymmetrical with
respect to the coordinate’s interchanges of (j i↔j j ).

Proof: From the definition ofON @Eq. ~32!#, we have

O NPab5PabON5ON . ~36!

For theN53 case, for example, the direct calculations sh
O 3P125P12O35O3 ,O 3P235P23O35O3 , and so on. Us-
ing Eqs.~36! and ~23!, we have

O NYi j
lm5~21!ON . ~37!

From Eqs.~21! and ~23!, XF can be written as

XF5$ei (k1jQ1
1k2jQ2

1¯1kNjQN
)1Y12

12ei (k2jQ1
1k1jQ2

1¯1kNjQN
)

1Y13
23Y12

12ei (k2jQ1
1k3jQ2

1k1jQ3
1¯1kNjQN

)

1~N! 23! other terms%a12̄ N
(Q) . ~38!

Using Eqs.~37! and ~38!, we obtain

~O NXF!~j1 ,¯,jN!

5$ei (k1jQ1
1k2jQ2

1¯1kNjQN
)2ei (k2jQ1

1k1jQ2
1¯1kNjQN

)

1ei (k2jQ1
1k3jQ2

1k1jQ3
1¯1kNjQN

)

1~N! 23! other terms%ONa12̄ N
(Q)

5(
P

~21!P exp$ i @kP1
jQ1

1•••1kPN
jQN

#%

3~ONa12̄ N
(Q) !. ~39!

Therefore, we conclude that (O NXF)(j1 ,¯,jN) is antisym-
metrical with respect to (j i↔j j ).

Lemma 2:(A NXB)(j1 ,j2 ,¯,jN) is antisymmetrical with
respect to the coordinate’s interchanges of (j i↔j j ).

Proof: Noting @see Eqs.~33!, ~29!, ~27!#

A NPab5PabAN52AN , ~40!

A NZi j
lm5~21!AN , ~41!

we then have

~A NXB!~j1 ,¯,jN!

5(
P

~21!P exp$ i @kP1
jQ1

1•••1kPN
jQN

#%

3~ANb
12̄ N

(Q) !. ~42!

Then the lemma is proved.

V. SOLUTIONS OF THE PROBLEM

The ansatz of Eq.~16! can be compactly written as

C5)
i , j

S 12
c

4
e~j i j !e~h i j ! D ~MX!~NY!, ~43!

where (MX) and (NY) are required to be antisymmetric
under the interchanges of the coordinate variables. Acc
ing to Lemmas 1 and 2, we see that
d-

M,N5HON for 1D fermions

AN for 1D bosons.
~44!

As the DS1 fieldsqa(jh) in Eq. ~1! are (211)D Bose
fields, the commutators$@ ,#2 , see Eqs.~9! and ~10!% are
used to quantized the system and the 2DN-body wave func-
tions denoted inCB must be symmetrical under the colo
interchange (ai↔aj ) and the coordinate interchang
@(j ih i)↔(j jh i)#. Namely, the 2D Bose wave functionsCB

must satisfy

PaiajCBuj ih i↔j jh j
5CB. ~45!

As qa are (211)D Fermi fields, the anticommutators shou
be used, andCF must be antisymmetrical under (ai↔aj )
and @(j ih i)↔(j jh i)#. Namely,

PaiajCFuj ih i↔j jh j
52CF. ~46!

Thus, for the 2D boson case, two solutions ofCB can be
constructed as following

C1
B5)

i , j
F12

c

4
e~j i j !e~h i j !G@O NXF~j1¯jN!#

3@O NYF~h1¯hN!#, ~47!

C2
B5)

i , j
F12

c

4
e~j i j !e~h i j !G@A NXB~j1¯jN!#

3@A NYB~h1¯hN!#. ~48!

Using Eqs.~36!, ~39!, ~40!, and~42!, we can check Eq.~45!
directly. In addition, from the Bethe ansatz Eqs.~25!, ~26!,
~30!, and~31! andE5E11E2, we can see that the eigenva
ues ofC1

B and C2
B are different from each other generall

i.e., the states corresponding toC1
B andC2

B are nondegener
ate.

For the 2D fermion case, the desired results are

C1
F5)

i , j
F12

c

4
e~j i j !e~h i j !G@O NXF~j1¯jN!#

3@A NYB~h1¯hN!#, ~49!

C2
F5)

i , j
F12

c

4
e~j i j !e~h i j !G@A NXB~j1¯jN!#

3@O NYF~h1¯hN!#. ~50!

Equation~46! can also be checked directly. The eigenvalu
corresponding toCF are also determined by the Bethe equ
tions andE5E11E2.

It is similar to Ref.@2# that we can proveC1,2
B andC1,2

F

shown in above are of the exact solutions of the Eq.~15!.
Thus we conclude that the 2D quantum many-body prob
induced from the quantum DS1 system with two compon
has been solved exactly.



f t
B

n

-

an
r

i-
-

d

nd-

this
age
ob-
s.

1

e of

1D

the

and

a-
ati-
o

ua-
the
is is
the
r
sed
D

es

ose

PRE 61 4749QUANTUM INTEGRABLE SYSTEM WITH TWO . . .
VI. GROUND-STATE ENERGIES OF THE SYSTEM

In this section, we discuss the ground-state energies o
DS1 system solved in the previous section by using the
the ansatz Eqs.~25!, ~26! and~30!, ~31!. Let the 2DN-body
problem reduced from 2D DS1 system with two color~or
spin! components hasM colors down andN2M colors up.
Therefore bothXF,B(j1,j2, . . .jN) andYF,B(h1,h2, . . .hN)
in Eqs. ~47!–~50! are one dimensionalN-body wave func-
tions with M colors down andN2M colors up. We are in-
terested in the limit thatN, M , and the lengthL of the box
go to infinity proportionately, i.e., bothN/L5D and M /L
5Dm are finite.

For the one-dimensionalN-fermion problem, by the
nested Bethe ansatz~or Bethe-Yang ansatz! Eqs. ~25! and
~26!, the corresponding integration equations for the grou
state read@4#

2ps152E
2B1

B1 2gs1~L8!dL8

g21~L2L8!2 1E
2Q1

Q1 4gr1~k!dk

g214~k2L!2 ,

~51!

2pr1511E
2B1

B1 4gs1~L!dL

g214~k2L!2 , ~52!

wherer1(k) is particle~i.e., 1D fermion! density distribution
function of k, ands1(L) is color-down particle density dis
tribution function ofL. Namely, we have

D5E
2Q1

Q1
r1~k!dk, Dm5E

2B1

B1
s1~L!dL,

~53!

E1 /N5D21E
2Q1

Q1
k2r1~k!dk.

For 1D N-boson case, starting from the nested Bethe
satz Eqs.~30! and ~31!, similar integration equations fo
ground state of bosons can be derived~see the Appendix!.
The results are as follows:

2ps25E
2B2

B2 2gs2~L8!dL8

g21~L2L8!2 2E
2Q2

Q2 4gr2~k!dk

g214~k2L!2 ,

~54!

2pr2512E
2B2

B2 4gs2~L!dL

g214~L2k!2 1E
2Q2

Q2 2gr2~k8!dk8

g21~k2k8!2 ,

~55!

wherer2(k) and s2(L) are bosonic particle density distr
bution function ofk and its color-down particle density dis
tribution function ofL respectively, i.e.,

D5E
2Q2

Q2
r2~k!dk, Dm5E

2B2

B2
s2~L!dL,

~56!

E2 /N5D21E
2Q2

Q2
k2r2~k!dk.

The average energies of the 2D DS1 ground states
scribed byC1

B , C2
B , C1

F , andC2
F @see Eqs.~47!–~50!# are
he
e-

d

-

e-

denoted byE(C1
B), E(C2

B), E(C1
F), and E(C2

F), respec-
tively. Then, the average energies per particle for the grou
states are as follows:

E~C1
B!/N52E1 /N52D21E

Q1

Q1
k2r1~k!dk, ~57!

E~C2
B!/N52E2 /N52D21E

Q2

Q2
k2r2~k!dk, ~58!

E~C1
F!/N5

1

N
~E11E2!

5D21F E
Q1

Q1
k2r1~k!dk1E

Q2

Q2
k2r2~k!dkG

5
1

2
@E~C1

B!1E~C2
B!#, ~59!

E~C2
F!/N5E~C1

F!/N. ~60!

From these equations, the following can been seen:~1! The
average energies per particle for the ground states of
two-dimensional DS1 problem are reduced into the aver
energies per particle of one-dimensional many-body pr
lems. AsD andDm are given, by solving the integration Eq
~51!–~56!, we obtain ther1(k) andr2(k), and then get the
desired results ofE(C1

B)/N, E(C2
B)/N, E(C1

F)/N, and
E(C2

F)/N. ~2! For the two bosonic solutions of the 2D DS
system with two colors@Eqs. ~47! and ~48!#, the average
ground state energies per particle are twice as large as on
the 1D fermions or 1D bosons.~3! For the fermion solutions
of this 2D DS1 system,E(C1

F)/N andE(C2
F)/N are the sum

of 1D fermion average energy per particle and the
bosons. ~4! In general, E(C1

B)ÞE(C2
B)ÞE(C1, or 2

F ).
Namely, for the same DS1 system, if the statistics of
wave functions~or particles! is different, the corresponding
ground-state energies are different. This is remarkable
reflects the statistical effects in the 2D DS1 system.

VII. DISCUSSION AND SUMMARY

Finally, we would like to speculate some further applic
tions of the results presented in this paper to the mathem
cal physics. Our results may be useful in the following tw
respects. First, the Bethe ansatz Eqs.~25! and ~26! for fer-
mion wave functions and Eqs.~30! and~31! for boson wave
functions can be solved, respectively, even though the eq
tions are systems of transcendental equations for which
roots are not easy to locate. The so-called string hypothes
used for the analysis and classification of the roots for
Bethe ansatz equations@7,8#. Thus, we could study thei
ground state, the excitation, and the thermodynamics ba
on it @7,8#. Then, the thermodynamical properties of the 1
Bose or Fermi gas withd-function interaction and with two
components can be explored. The Eqs.~47!–~50! indicate
that under the thermodynamical limit the 2D DS1 gas
~with two color components! are classified into 2D Bose
gases and 2D Fermi gases. By Eqs.~47! and ~48!, the 2D
Bose gases are composed of two 1D Fermi gases or 1D B
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gases, and by Eqs.~49! and ~50!, the 2D Fermi gases ar
composed of 1D Fermi gas and 1D Bose gas. Hence,
thermodynamics of 2D DS1 gases with two color comp
nents can be derived exactly. It would be interesting in ph
ics, because this is an interesting and nontrivial exampl
illustrate coupling~or fusing! of two 1D 2-component gase
with d-function interacting and with different or the sam
statistics. Second, the colorless DS1 equation originate
studies of nonlinear phenomena@9#. Five years ago, Pang
Pu, and Zhao@14# showed an example that the solutions
the initial-boundary-value problem for the related classi
DS1 equation in Ref.@15# are consistent with the solution
for the quantum DS1 system with time-dependent app
forces. This indicates that the classical solutions of the D
equation correspond to the classical limit of the solutions
the quantum DS1 system. This method reveals the solut
of the colorless DS1 equation. To the quantum DS1 sys
with color indices studied in this present paper, similar c
respondences are expected. Hence, the structure of the
tions of the quantum DS1-system with color indices revea
in this paper would be helpful to understand the correspo
ing classical solutions of DS1 systems with color. The s
cific studies on the above speculations would be meaning
however, they are beyond the scope of this present pap

To summarize, we formulated the quantum multicomp
nent DS1 system in terms of the quantum multicompon
many-body Hamiltonian in 2D space. Then we reduced
2D Hamiltonian to two 1D multicomponent many-bod
problems. As the potential between two particles with t
components in one dimension is ad function, the Bethe an-
satz was used to solve these 1D problems. By using
ansatz of Ref.@1# and introducing some useful Young oper
tors, we presented aN-body variable-separation ansatz f
fusing two 1D solutions to construct 2D wave functions
the quantum many-body problem, which is induced from
quantum two-component DS1 system. There are two type
wave functions: bosons and fermions. Both of them sat
the 2D many-body Schro¨dinger equation of the DS1 syste
exactly. The results have been used to study the gro
states of the system. Some further applications of the res
presented in this paper are speculated and discussed.
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APPENDIX

Let us derive Eqs.~54! and~55! in the text. We start from
the Bethe ansatz Eqs.~30! and ~31! of 1D bosons with two
color components. Taking the logarithm of Eqs.~30! and
~31! respectively, we have

kjL52pI k22(
i 51
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tan21
kj2ki
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22 (
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where~for the case ofN5even, M5odd)

1
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1I k5successive integers from 12

1

2
N to 1

1

2
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JL5successive integers from

2
1

2
~M21! to 1

1

2
~M21!.

We can now approach the limitN→`, M→`, L→` pro-
portionally, obtaining

k52p f 222E
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2Q2

Q2
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B2
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~A6!

Or, after differentiation,

2ps25E
2B2

B2 2gs2~L8!dL8

g21~L2L8!2 2E
2Q2

Q2 4gr2~k!dk

g214~k2L!2 ,

~A7!

2pr2512E
2B2

B2 4gs2~L!dL

g214~L2k!2 1E
2Q2

Q2 2gr2~k8!dk8

g21~k2k8!2 ,

~A8!

which are just Eqs.~54! and ~55!.
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