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Quantum integrable system with two color components in two dimensions
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The Davey-Stewartson (DS1) system[Proc. R. Soc. London, Ser. 838 101 (1974)] is an integrable
model in two dimensions. A quantum DS1 system with two color components in two dimensions has been
reformulated. This two-dimensional problem has been reduced to two one-dimensional many-body problems
with two color components. The solutions to the two-dimensional problem under consideration can be con-
structed from the resulting problem in one dimensions. For the latter problenmdvfithction interactions and
solution by the Bethe ansatz, we introduce symmetrical and antisymmetrical Young operators of the permu-
tation group and obtain the exact solutions for the quantum DS1 system.

PACS numbd(s): 05.30—d, 03.65—w

[. INTRODUCTION variable-separation ansatz for the multicomponent case and
to solve a specific model of 2D quantum DS1 system with
The Davey-Stewartson (DS1) system is an integrable multicomponents.

model in space of two spatial and one temporal dimensions The 1D N-body model with two components has been
[(2+1)D]. The quantized DS1 system with scalar fie{dls investigated for long tim¢4,5]. The most famous one is the
component, or 1Ccan be formulated in terms of the Hamil- model with delta-function interaction between 2C fermions
tonian of quantum many-body problem in two dimensions[4]. It was solved by the Bethe ansd&] and leads to the
and some of them can be solved exaftly?]. Particularly, it ~ Yang-Baxter equation and its thermodynamics stuifeg]
has been shown in Ref2] that these two-dimensioné2D)  because of the completeness of the Bethe ansatz solutions. In
quantumN-body system with 1C fields can be reduced to thethis paper, for definiteness, we shall study specific 2D quan-
solvable 1D quantunN-body systems with 1C fields and tum N-body system with 2C fields associated with the DS1
with two-body potential$3]. Thus through solving 1D quan- system. This quanturil-body problem under consideration
tum N-body problems with 1C fields we can get the solutionscan be reduced to two 1D quantusibody problems with
for 2D quantumN-body problems with 1C fields. Here, the 2C fields of Ref[4] and then be exactly solved by using an
key step is to separate the spatial variables of 2D quanturappropriateN-body variable-separation ansatz and the Bethe
N-body problems with 1C fields by constructing an ansatzansatz.

[1,2]
Il. QUANTUM DS1 SYSTEM WITH TWO COMPONENTS
W&y o N Ty N IN TWO DIMENSIONS
c Following the usual DS1 equatidd,9], the equation for
:L[j 1— ge(&elm)) the DS1 system with two components reads
XX(Exy - &Y (s ), ig="—3(d5+ 3 a+iA1q+iAq, (1)

where &;=&—§& and 7;;=75,—»;. This ansatz will be whereq has two color components,

called the N-body variable-separation ansatz. It is well

known that the variable-separation methods are widely used q= ( Q1) 2
in solving high-dimensional one-particle problems. For in- gy’

stance, for getting the wave functions of electron in hydro-

gen atom, the ansat¥(r,0,$)=R(r)P(6)®(¢) is used to and

reduce the 3D problem to the 1D problefhis ansatz is

what we call the one-body variable-separation ansatae (= dy)Ar=—ic(dx+3y)(q"-q),
N-body variable-separation ansatz can be thought of as the ) :
extension of one-body variable-separation ansatz. Since the (dxtdy)Ay=ic(dx—dy)(q'-q),

N-body problems are much more complicated than the one- . . .
body problems, it will be highly nontrivial to construct a Where T means the Hermitian transposition, amglthe cou-

N-body variable-separation ansatz. Referefiteprovided Pling constant. Introducing the coordinatés=x+y,7=x
the first example for it and showed that the idea of variable™ Y. We have
separating works indeed for tHé-body problems induced

from the DS1 system. A= —icd, (q"-q)—iuy(é), 3
In this paper, we intend to generalize the above idea to the ] . )
multicomponent DS1 system, namely, to construbt-body Ax=icd,d, ~(q'-q)+iuy(n), (4)
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where

1 ©
g,Mq"aq)= 5( f_nwdn’— L dn')qT(i,n'.t)-Q(&n',t),
5

andu, andu, are constants of integration. According to Ref.

[2], we choose them as

()= 1 | dE'dy'Us(E-£)a' (€m0 0 7' 0,
©

Up(7) = %f d¢'dn'Us(n—n)q"(&, 7", 1)-a(&",7'.b).
(7
Thus, Eq.(1) can be written as

—(dz+a2)a+cldga, (at-a)+d,0; (' a)]g
+ %f de'dy'[Uy(é—&)+Ua(n— 21" -q")q,
8

whereq' =q(¢',7',t). We quantize the system with the ca-
nonical commutation relations

[Ga(& 7,0),00(&", 7' D] =28 _8(E—&)8(n—7'),
9
[Qa(fvﬂat)y%(flvU'vt)]izo, (10)

wherea,b=1 or 2, [,], and[,]_ are anticommutator and
commutator, respectively. Then E@®) can be written in the
form

q=i[H,q], (12)

whereH is the Hamiltonian of the system

f d§d7i( q'(d¢+33)-q
+%q*[(&gaglw,,agl)(qT-qH~q
+ %f dé'dn'qTUL(é— &) +Ux(n—7")]
><(q’T-q’)-q]- (12)
The N-particle eigenvalue problem is
H|W)=

E|W), (13

where
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|‘I’>:f dé;dn;---déndny
x > Wa . a (€171 EnTN)
ap --ay
X5 (é171) -0 (Enmn)[0). (14

The N-particle wave function¥, , is defined by Eq.
(14), which satisfies thé&-body Schrdinger equation

—Zi (0 +35)W

+ (1) (€)W g a

+c§ [e(&;) 8 (mij)

+§J [Us(&) +Un(7i)]¥4

=EV, . ay (15
where ;= §—¢&;,0' (&) = ¢, 0(&5), and e(&;) =1 for &;
>0,0 for §;=0,—1 for &;<0. Since there are products of

distributions in Eq.(15), an appropriate regularization for
avoiding uncertainty is necessary. This issue has been dis-
cussed in Ref[10].

lll. VARIABLE SEPARATION OF QUANTUM DS1
WITH TWO COMPONENTS AND BETHE ANSATZ

Our purpose is to solve the-body Schrdinger Eq.(15).
The results in Ref[2] remind us that we can make the fol-
lowing ansatz:

S M5

P i<
al a

\Ifal...aN= (&) 6(77”)}

’

’
b-by,

! ’
o Nay oy bl

1

'fN)Ybi---b,’\‘( 7y

.
aq aN,al

anima,’\‘(gl” 7N (16)

where M and A are matrices being independentéénd 7,
and botthl...aN(gl---gN) and Ybl...bN(nl---nN) are one-

dimensional wave functions dfl bodies. Substituting Eq.
(16) into Eq.(15), we obtain

- Z &éixal---aN"' 2 Ul(fij)xal---aN: Elxal---aN )
17

- 2. ‘finblwa'*' ;l U2(7ij) Y, -0, = E2Yb by
(18)

where U,(&;;) and U,(7;;) are two-body potentials, Egs.
(17) and(18) are one-dimension&-body Schrdinger equa-
tions andE;+ E,=E. Above derivation indicates that the
two-dimensionalN-body Schrdinger Eq.(15) has been re-
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duced into two one-dimensional-body Schrdinger equa- with a=1,:-,M, j=1,--,N. Through exactly the same pro-

tions. Namely, the variables in the two-dimensioNabody ~ cedures we can get the solutid® andE, to Eq. (20).

wave funcUon\If -y, have been separated. As X andY are boson wave functions, denoted X% and
At this stage/\/l andN are unknown temporarily. It is Y, it is easy to show that

expected that for any given pair of exactly solvable 1D

N-body problems and the correspondent solutions, we could B_ Q) i +ot

construct the solution¥ » .. for 2D N-body problems Eq. X ; B~ explifkp,£o, ke fo (27

(15) through constructing an appropriatef X N matrix. It Q  _ ~Im 5(Q)

has been known that the 18-body problem in the form of By = L5 B (28)
Eq. (17) or (18 can be solved exactly.for a class of poten— i(k —k-)P'”‘+g

tials[4,5,11. To illustrate the construction o¥1 X A matrix, Im_ 7 (29)
we take both potentials in Eq&l7) and (18) to be the delta I i(kj—ki)—g

functions, i.e., U4(§;)=29(&;) and  Uy(%;)
=2g98(7n;;) (9>0, the coupling constantThen Eqgs.(17)
and(18) become

and the Bethe ansatz equations are as follh@s:

kj— k+|g Ag—kj+ig/2

Ik L_ N+1
, (=1 H k—k—igps A,k —igi2’ 0
_Zi aéixal‘..aNjng;j 8(&)Xay -0, =E1Xa .. ay
M . N .
(19 Aﬁ—AaJr!g:(_l)MHH Aﬁ—kj+!g/2. 31
a=1 Ng—A,—ig j=1 Ag—k;j—ig/2
_ 2 ) - . .
Z %Ybl“'bNJrngj S(7i1) Y, by =E2Yb, by YB is the same aX®. It is well known thatx™ andYF (XB

(20) and YB) are antisymmetricalsymmetrical as the coordi-
nates and the color indices of the particles interchange simul-
As X andY are wave functions of Fermions with two com- taneously, instead of the coordinates merely interchanging.
ponents, denoted by" andYF, the problem has been solved

by Yang long agd4] (more explicitly, see Refd.12] and IV. YOUNG OPERATOR OF PERMUTATION GROUP
[13]). According to the Bethe ansatz, the continual solution _ .
of Eg. (19) in the region of G<&g <éq <-+"<&q <L For permutation grou@y:  {e;,i=1,--,N!}, the totally
reads tooee N symmetrical Young operator is
XF=3 af@explilkp o, -~ +Kp,bo,) On=2, &, (32
=a(Q gilkiéq, tkabg, T Tknég,) and the totally antisymmetrical Young operator is
12---N

N!

4+ Q) gilkaéq, Tkidg, +- Tknéq,)
orn® ! ? N Ay=2> (—1)Pig;. (33
~
+(N!—2) other terms, (21 I

The Young diagram fo0y is
where  XTe{X{ ...} P=[P1,P,,...Py] and Q

=[Q4,Q,, ...,Qn] are two permutations of the integers ,
. N, and 11213(---|N
Q=Y (22 and for Ay, it is
1
—i(ki—k)P'™+
yim= ( i—k) g (23)
J i(kj—ki)—g
2
The eigenvalue is given by
Ei=k2+K3+ .- +k3, (24)
where{k;} are determined by the Bethe ansatz equations, N
M .
_ ki—Ag)—gl2
elkjL:H I( ] ﬁ) g (25)
p=1i(kj—Ap)+9/2 For S;, for example, we have

M O3=1+P™+ P13+ P24+ piop231 p23pl2 (34

1'_“[ i(k—A,)—gl2 i(A,—Apg)+g .
Sik—A)+g2 pEi(A,—Ap =g Az=1—P-pl3_p2; pl2p23; p23pl2 (3
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Lemma 1:(OnXg)(&1,€&5, -+, &N) is antisymmetrical with
respect to the coordinate’s interchanges §f¢;).
Proof: From the definition ofOy [Eq. (32)], we have

O NP2P=P3P0O =0 . (36)
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Oy for 1D fermions
M,N=

Ay (44)

for 1D bosons.

As the DS1 fieldsg,(é7n) in Eqg. (1) are (2+1)D Bose
fields, the commutator§[,]_, see Egs(9) and (10)} are

For theN=3 case, for example, the direct calculations showused to quantized the system and thetDody wave func-

O 4PY2=P20,=0,;,0,PE=P%0,;=05;, and so on. Us-
ing Egs.(36) and(23), we have

ONY("=(~1)0y. (37)

From Egs.(21) and(23), XF can be written as

XF = {elilkato, *katg,+ +hnk,) 1 y el (ot Hhag, t +hnégy)
+ Y2y i (ato, +hato, *kafg, + +knégy)
+(N!'—3) other termsa!? . (39)

Using Eqgs.(37) and(38), we obtain

(ONXF)(fl )
:{ei(knglJr kaéq,t tknég,) — @i(kaéq, T kiég,* +knég,)

+ el (Ko, +kaéq, T Kigq, T +Knéq,)

+(N!'—3) other termsOyai?.

=2 (~D explilke,fq,+ -+ ke, do I}

X (Onel9 ). (39

Therefore, we conclude tha®(XF) (&, -+, &y) is antisym-
metrical with respect to§« ¢;).
Lemma 2(AXB)(&1,&,, -+, &y) is antisymmetrical with
respect to the coordinate’s interchanges §f¢;).
Proof: Noting [see Eqgs(393), (29), (27)]
ANPP=PP A= — Ay, (40)
ANZ= (1) Ay, (41)
we then have

(ANXB) (&1, E0)
=2 (~Dexplilke, o, + -+ ke, fo I}

X(ANBD ).

12---N

(42)
Then the lemma is proved.

V. SOLUTIONS OF THE PROBLEM

The ansatz of Eq(16) can be compactly written as

v=]1

i<j

1 2 el elmy) | (MXWY), @3

tions denoted in¥® must be symmetrical under the color-
interchange §;<a;) and the coordinate interchange
[(&imi)«(&m)]. Namely, the 2D Bose wave functions®
must satisfy
aja\rB —_\yB

paigiy |§i,7iH§j,,j Pe, (45
As g, are (2+1)D Fermi fields, the anticommutators should
be used, andl'" must be antisymmetrical unden;¢-a;)

and[ (7)< (&m)]. Namely,

ajajy F _ _a\F
P I J\P |§i77i‘—’§j7lj_ \P ) (46)
Thus, for the 2D boson case, two solutionsW®f can be
constructed as following

vi=11

1<]

Cc
1= e(&j)elm)) [ONXT (€1 -En)]

X[ONY (71 90)], (47)
‘Pg:ilz[j [1_ %E(gij)f( 7ij) [[ANXB(Er - En) ]
X[ANYB(71 - 0) ] (48)

Using Egs.(36), (39), (40), and(42), we can check Eq45)
directly. In addition, from the Bethe ansatz E@®5), (26),
(30), and(31) andE=E; + E,, we can see that the eigenval-
ues of W® and W3 are different from each other generally,
i.e., the states corresponding‘lfcf and\lfg are nondegener-
ate.

For the 2D fermion case, the desired results are

vi=11

i<j

[ONXT(é1--EN)]

c
1—Z€(§ij)6(77ij)

X[ANYB(71 0], (49
Wgzil;[j [1_ %E(gij)f( 77ij) [ANXB(fl'”fN)]
X[ONYF (71 mn) ] (50)

Equation(46) can also be checked directly. The eigenvalues
corresponding toP " are also determined by the Bethe equa-
tions andE=E;+E,.

It is similar to Ref.[2] that we can provel?, and ¥},
shown in above are of the exact solutions of the BEdp).

where (MX) and (VY) are required to be antisymmetrical Thus we conclude that the 2D quantum many-body problem
under the interchanges of the coordinate variables. Accordaduced from the quantum DS1 system with two component
ing to Lemmas 1 and 2, we see that has been solved exactly.
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VI. GROUND-STATE ENERGIES OF THE SYSTEM denoted byE(¥?), E(¥]), E(VE), and E(¥}), respec-
In this section, we discuss the ground-state energies of thtévely. Then, the averjclge energies per particle for the ground-
DS1 system solved in the previous section by using the pedtates are as follows:
the ansatz Eqg25), (26) and(30), (31). Let the 2DN-body o
problem reduced from 2D DS1 system with two color E(W?)/N:2E1/N=2D‘lf k?p1(k)dk, (57)
spin components ha colors down andN—M colors up. Q1

Therefore bottXFB(£,,&,, .. .&y) andYTB(51, 75, . .. 1)
in Egs. (47)—(50) are one dimensionadl-body wave func-
tions with M colors down andN—M colors up. We are in-
terested in the limit thal, M, and the length of the box
go to infinity proportionately, i.e., bothN/L=D and M/L 1
=D,, are finite. E(\Iff)lNzﬁ(El—i— E,)

For the one-dimensionaN-fermion problem, by the

B “1 (%2,
E(WB)/N=2E,/N=2D K2p,(k)dk, (58
Q2

nested Bethe ansator Bethe-Yang ansatzEgs. (25) and S [, Q ,
(26), the corresponding integration equations for the ground =D [f k Pl(k)dk+j k Pz(k)dk}
state read4] Q Q2
1
Bi 2go(A’)dA’  [Q1  4gp,(k)dk = [E(¥®)+E(T5)], (59)
27701:—f 2 A A2 f T Ak A2 2
-B, 9°F(A—A") —Q, 9°t4(k—A)

(51 E(P5)/N=E(¥)/N. (60)

2mp,=1+ fBl tg"l(A)dAz (52) From these equations, the following can been sébnThe
-, 97T 4(k=A)’ average energies per particle for the ground states of this
two-dimensional DS1 problem are reduced into the average
wherep, (k) is particle(i.e., 1D fermion density distribution  energies per particle of one-dimensional many-body prob-
function ofk, ando(A) is color-down particle density dis- |ems. AsD andD,, are given, by solving the integration Egs.

tribution function of A. Namely, we have (51)—(56), we obtain thep;(k) andp,(k), and then get the
o . desired results ofE(VF)/N, E(¥5)/N, E(¥F)/N, and
DZJ ] p1(k)dk, Dm:f ! o1(A)dA, E(W5)/N. (2) For the two bosonic solutions of the 2D DS1
-Q -B; system with two colordEgs. (47) and (48)], the average

(53 ground state energies per particle are twice as large as one of
E /N=D*1JQ1 K2p,(K)dk the 1D fermions or 1D boson&3) For the fermion solutions
L g, P2 : of this 2D DS1 systeng(¥)/N andE(W5)/N are the sum
of 1D fermion average energy per particle and the 1D
For 1D N-boson case, starting from the nested Bethe anbosons. (4) In general, E(‘P?)q&E(‘lfg)a&E(‘lfi or 2)-
satz Egs.(30) and (31), similar integration equations for Namely, for the same DS1 system, if the statistics of the
ground state of bosons can be derisde the Appendix  wave functions(or particles is different, the corresponding
The results are as follows: ground-state energies are different. This is remarkable and

reflects the statistical effects in the 2D DS1 system.
2 f52 2goa(AT)dA’ sz 4gpo(k)dk
TO= VISV

g, PPH(A-ADZ | g, g7 HAk—A) VII. DISCUSSION AND SUMMARY
(54) . . .
Finally, we would like to speculate some further applica-

B, 4go,(A)dA Q. 2gp,(k")dK’ tions of the results presented in this paper to the mathemati-
27Tp2=1—f P+ a(A—K)? f 9%+ (k=K')2’ cal physics. Our results may be useful in the following two
-8, 0 —Q 9 respects. First, the Bethe ansatz E@5) and (26) for fer-

(59) mion wave functions and Eqé30) and(31) for boson wave
functions can be solved, respectively, even though the equa-
tions are systems of transcendental equations for which the
roots are not easy to locate. The so-called string hypothesis is
used for the analysis and classification of the roots for the

Q, B, Bethe ansatz equatiori§,8]. Thus, we could study their
sz po(k)dk, szf ay(A)dA, ground state, the excitation, and the thermodynamics based
~Q 2 on it [7,8]. Then, the thermodynamical properties of the 1D
(56) Bose or Fermi gas witl#-function interaction and with two
E2/N=D‘1JQ2 k2p,(K)dk. components can be explored. The E¢&7)—(50) indicate
-Q, that under the thermodynamical limit the 2D DS1 gases
(with two color componenjsare classified into 2D Bose
The average energies of the 2D DS1 ground states deyases and 2D Fermi gases. By E¢$7) and (48), the 2D
scribed by??, w2 wF and¥} [see Eqs(47)—(50)] are  Bose gases are composed of two 1D Fermi gases or 1D Bose

where p,(k) and o,(A) are bosonic particle density distri-
bution function ofk and its color-down particle density dis-
tribution function of A respectively, i.e.,
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gases, and by Eq$49) fand (50), the 2D Fermi gases are M L Ag—A, N L 2(Ap—k))
composed of 1D Fermi gas and 1D Bose gas. Hence, the 2, tan! =27d\+2, tam t—F 1
thermodynamics of 2D DS1 gases with two color compo- — «=1 =1 9

nents can be derived exactly. It would be interesting in phys- (A2)
ics, because this is an interesting and nontrivial example to

illustrate coupling(or fusing of two 1D 2-component gases
with &-function interacting and with different or the same
statistics. Second, the colorless DS1 equation originated in

studies of nonlinear phenomef@]. Five years ago, Pang, 1 1
Pu, and Zhad14] showed an example that the solutions of = +I,=successive integers from—1=N to + =N,
the initial-boundary-value problem for the related classical 2 2
DS1 equation in Ref{15] are consistent with the solutions

for the quantum DS1 system with time-dependent applied

where(for the case oN=even, M = odd)

forces. This indicates that the classical solutions of the DS1 J,=successive integers from
equation correspond to the classical limit of the solutions for 1 1
the quantum DS1 system. This method reveals the solutions - E(M —-1) to + E(M -1).

of the colorless DS1 equation. To the quantum DS1 system

with color indices studied in this present paper, similar cor-

respondences are expected. Hence, the structure of the so(we can now approach the linfit—, M-, L—s pro-

tions of the quantum DS1-system with color indices reveale ortionally. obtainin ' '

in this paper would be helpful to understand the correspondp Y, 9

ing classical solutions of DS1 systems with color. The spe-

cific studies on the above speculations would be meaningful; Q (k

however, they are beyond the scope of this present paper. k:zwfz—zf dk’ p,(k")tan?
To summarize, we formulated the quantum multicompo- —Q2

nent DS1 system in terms of the quantum multicomponent B, 2(A—K)

many-body Hamiltonian in 2D space. Then we reduced this -2 dAoy(A)tan 1 ——, (A3)

2D Hamiltonian to two 1D multicomponent many-body ~B 9

problems. As the potential between two particles with two

components in one dimension isédunction, the Bethe an-

satz was used to solve these 1D problems. By using the

ansatz of Ref[1] and introducing some useful Young opera-

tors, we presented W-body variable-separation ansatz for

fusing two 1D solutions to construct 2D wave functions of

the quantum many-body problem, which is induced from the

guantum two-component DS1 system. There are two types of

wave functions: bosons and fermions. Both of them satisfy

the 2D many-body Schdinger equation of the DS1 system dh df

exactly. The results have been used to study the ground d—Azzaz, d—k2=p2, (A5)

states of the system. Some further applications of the results

presented in this paper are speculated and discussed.

—k’)

Q0 2(A—K)
=2wh2+2f dkp,(K)tan IT’ (A4)
-Q

2
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) _ (B2 2goa(A")dA’ sz 4gp,(k)dk
APPENDIX 772 ) e, A=A o, P AKA
Let us derive Eq954) and(55) in the text. We start from (A7)

the Bethe ansatz Eq&30) and (31) of 1D bosons with two
color components. Taking the logarithm of Ed80) and o
(31) respectively, we have S fBZ 4goy(A)dA N JQZ 2gp2(k’)dk
P2 8, PP+ AHA-K? " J_q, PP+ (k—K)?’
N M (A8)
ki —k; 2(A g—k;
kL=2ml,—2>, tan 1-——-2 tan‘lw,
i=1 g B=1 g
(A1)  which are just Egs(54) and(55).
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